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Abstract

A method to incorporate passive microwave remote sensing measurements within a
spatially distributed snow hydrology model to provide estimates of the spatial distribution
of snow water equivalent (SWE) as a function of time is implemented. The passive
microwave remote sensing measurements are at 25 km resolution. However, in mountain
regions the spatial variability of SWE over a 25 km footprint is large due to topographic
influences. On the other hand, the snow hydrology model has built-in topographic
information and the capability to estimate SWE at a 1 km resolution. In our work, the
snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave
remote sensing measurements. The method is applied to the Upper Rio Grande River
Basin in the mountains of Colorado. The change in prediction of SWE from hydrology
modeling with and without updating is compared with measurements from two SNOTEL
sites in and near the basin. The results indicate that the method incorporating the remote
sensing measurements into the hydrology model is able to more closely estimate the

temporal evolution of the measured values of SWE as a function of time.

1. Introduction

Mountain seasonal snowpacks provide much of the potable water supply in many
areas, particularly the western United States. These mountain snowpacks exhibit high
spatial variability in their properties, especially snow water equivalent (SWE), which is an
important variable in hydrology and water resources engineering. The total water content
of the snow and its spatial distribution determine the amount and timing of snow meltwater
available for water supply and hydropower generation. The development of a method to
estimate spatial distributions of snow properties such as SWE at a | km spatial resolution
will provide information useful to snow melt prediction.

The estimation of distributed SWE, however, remains a challenge due to the high
variability of this quantity over small distances. Point measurements of snow properties,
such as the SNOTEL (SNOwpack TELemetry) measurements of SWE are sparsely
distributed and not representative of the parameter spatial variability. This makes it difficult

to obtain a sufficiently accurate estimate of the water volume available in the snowpack and



to incorporate these measurements into basin-scale spatially distributed hydrology models
which operate on a spatial grid of resolution 1 km or less.

Satellite remote sensing appears to have the potential for overcoming this deficiency
due to its inherent ability to measure spatial averages of snow properties. By their nature,
satellite remote sensing measurements can provide spatial estimates of snow properties and
are suited as inputs to spatially distributed hydrologic models. There has been previous
success in using satellite remote sensing measurements for the determination of snow
properties. The most successful has been the delineation of snow covered area (SCA)
using either visible (Dozier and Marks, 1987) or microwave (Josberger and Beauvillain,
1989) satellite measurements. The estimation of liquid water in the snowpack using
microwave radar measurements has also shown some success when compared with field
measurements (Shi and Dozier, 1995). The capabilities of satellite derived SCA within a
snow hydrology model has been shown (i.e., Rango, 1988). More information on snow
remote sensing and its applications within snow hydrology models can be found in the
recent reviews of Rango (1993), Engman (1995), and Bales and Harrington (1995).

Passive microwave remote sensing should also be able to provide information on
other snow properties. The received microwave signal from the earth's surface is
dependent on snow properties such as grain size, temperature, depth, and density. Unlike
the use of SCA within hydrology models, less has been done in fully exploiting this
information with a snow hydrology model. Rango et al. (1989) and Chang et al. (1991)
have explored the use of passive microwave remote sensing measurements to obtain basin-
wide estimates of SWE. Examinations of the relation between snow properties and passive
microwave brightness temperatures have been undertaken (see for example Hallikainen and
Jolma, 1992; Wang et al., 1992), but the relationship is not direct and estimation of snow
properties remains difficult. One of the difficulties in implementing a direct estimation
technique for snow properties is the many-to-one inverse problem encountered in going
from the measured microwave brightness temperatures to the snowpack properties.
Another problem is the difference in spatial resolution between a spatially distributed
hydrology mode! (1 km, or less) and the footprint resolution of the passive microwave
measurements (25 km). Thus, these previous algorithms retrieve averaged snow
parameters over the 25 km footprint.

To tackle these problems we use a method that combines several elements: a
spatially distributed snow hydrology model, a snow-microwave radiative transfer model,

and a parameter estimation technique with error minimizing steepest descent gradient



search. The spatial hydrology model operates at a 1 km pixel resolution using point
meteorological measurements as forcings and outputs snowpack parameters at this
resolution. Based on the snow property outputs, a microwave scattering model is used to
determine the brightness temperatures for each pixel. The | km pixel estimates are
integrated to the footprint measurement resolution and compared with the measured SSM/T
brightness temperatures. The adjusted brightness temperatures are disaggregated to the
pixel level and inverted to give new snow parameters used as updating inputs to the snow
hydrology model. The hydrology model continues running until the next update.

To test this method, we apply it to a hydrological basin in the mountains of
Colorado. The estimates of the temporal evolution of SWE are compared to SNOTEL

ground truth measurements at two sites.

2. Methodology

The methodology outlined in the introduction section consists of combining several
sources of information to provide the best estimate of the snowpack state parameters as
possible. We use a spatially distributed snow hydrology model and microwave satellite
measurements. These are linked by a snow-microwave scattering model and a parameter
estimation technique. In this section the new algorithm is outlined with each component
discussed in greater detail in the next section. The procedure used in obtaining the spatial
snow water equivalent estimates is given in the flow chart of Figure 1. Each step is

denoted by a letter in the flow chart and corresponds to the lettered description below.

a) The spatial data files are input to the snow hydrology model to determine the pixel
characteristics of the model grid at 1 km resolution. The hourly point meteorological
station information is used to drive the energy balance component of the snow hydrology
model. These measurements consist of air temperature, dew point temperature, surface
pressure, precipitation, cloud cover, and wind speed. These forcing variables are needed
as input for each pixel and are adjusted for each pixel based on its topographic
characteristics. '

b) Net energy fluxes are calculated for each pixel using the snowpack surface energy

balance model which operates at a I km spatial resolution. The output from the snow



hydrology model is snow depth, density, grain size, and temperature. These parameters
are determined for each pixel on an hourly basis.

¢) Atthe end of each day, the four output snowpack parameters are saved for use as input
to the remote sensing-electromagnetic scattering model. The end-of-day values coincide
with the nighttime satellite measurements used.

d) Based on the snowpack parameters obtained from the snow hydrology model, the
brightness temperature estimates at | km spatial resolution are made. This is done for 19
and 37 GHz for both vertical and horizontal polarizations. Each is integrated to the 25 km
scale to match the scale of the satellite measurements.

e) SSM/I measurements, with a resolution of 25 km, are used to compare with those
obtained from the models. The area of coverage is determined for each remote sensing
measurement; this is the overlap between the spatial domain of the models and the field of
view of the sensor measurements.

f) The differences between the spatially averaged simulated brightness temperatures and
those measured by the sensor are determined for each coverage area. The differences are
uniformly distributed back to each individual pixel in the respective coverage area. Each
pixel is adjusted by the same difference so that the average value of the pixel brightness
temperatures for the coverage area equals the values obtained from the SSM/I
measurements.

g) Snow parameters at the pixel (1 km) scale are determined from the adjusted brightness
temperatures through inversion. The updated snow parameters are returned to the snow
hydrology model which moves forward in time until the next available nighttime sensor
observation, whereupon the process repeats itself.

Our algorithm is a systematic combination of hydrology model and remote sensing
measurements. The remote sensing measurements are used to update and correct the
hydrology model prediction. On the other hand, the hydrology model constrains the
parameter inversion from the remote sensing measurements. This solves the many-to-one
inverse problem in remote sensing, as the hydrology model gives a priori estimates of the
snow parameter inversion. In addition, this algorithm gives snow parameter products at 1
km resolution as well as the temporal evolution of snow parameters.

The available data is discussed in the next section. Due to a lack of ground truth,
we implement this algorithm only for selected points where measurements of snow water

equivalent are available. This is used to validate the algorithm and demonstrate that the



algorithm has the potential to provide snow parameter estiates at the | km pixel resolution.
Thus, we have not implemented the 25 km integration of step (e) and all of step (f).

3. Data Characteristics

The basin chosen for the application of the technique is the upper portion of the Rio
Grande River in the mountains of Colorado. The basin is defined by the streamgauge at
Del Norte, Colorado and has an area of 3419 km? with an elevation range of 24324215
m. This basin has been used for previous snow-remote sensing studies (e.g., Rango et al.,
1989; Chang et al., 1991). The location of the basin is shown in Figure 2. .We use the
1992-1993 snow year for the application. We employ several data types in the
implementation and validation of the new algorithm: hydrology inputs, remote sensing
measurements, and ground truth. These are discussed below and listed in Table 1.

A. Hydrology model inputs

The data used to run the hydrology model consists of topographic and weather data.
The basin topographical characteristics are determined from 30 arc-second digital elevation
model (DEM) output, which gives an approximate pixel resolution of 1 km and defines the
spatial grid of the hydrology model. The basin area and its topographic representation are
determined from the DEM and shown in Figure 3. From the DEM file, pixel elevation is
determined, and slope, aspect, and shading characteristics of the pixels are calculated.

The forest cover plays an important role in the energy and mass balances of the
snowpack through the reduction of shortwave radiation and wind speed, and the
interception of snowfall by the forest canopy. Thus it is important to include forest cover
information in the snow hydrology model. Pixel forest cover was determined from the
Land Use and Land Cover digital files from the U.S. Geological Survey (USGS, 1990),
which uses a classification scheme developed by Anderson et al. (1976). The land use
pixels, with 200 m resolution, are aggregated to the DEM pixel scale (1 km) and used to
determine whether each hydrology model pixel is open, forested, or some fraction thereof.

The snow hydrology model uses meteorological inputs to determine the
precipitation characteristics as well as drive the snowpack surface energy balance. Hourly
point meteorological measurements from the National Weather Service are used in

conjunction with a distribution scheme based on the topography to provide spatial inputs to



the snow hydrology model. These consist of air temperature, wind speed, relative
humidity, cloud cover, and precipitation. Information from additional sites that record
daily precipitation totals is also used. Additionally, U.S. Geological Survey daily
streamflow values at the outlet of the basin are used to estimate the volume of precipitation

over the basin.

B. Satellite remote sensing measurements

Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave
Imager (SSM/]) brightness temperatures are obtained from the Distributed Active Archive
Center (DAAC) at the Marshall Space Flight Center. The SSM/I measures microwave
emission at four frequencies: 19, 22, 37 and 85 GHz with dual-polarization, except at 22
GHz, which is vertical only. More information on this sensor can be found in Hollinger et
al. (1990). We selected the F8 satellite, using the brightness temperature measurements at
the 19 and 37 GHz frequencies with horizontal and vertical polarizations, providing four
different measurements for each footprint. Each day with measurements over the basin is
determined. The nighttime measurements are saved and the daytime measurements are
discarded due to the possibility of small amounts of liquid water present in the snowpack as
a result of slight surface melting during the day, which re-freezes at night.

While the orbit of the satellite is sun-synchronous, providing approximately the
same time of coverage over the basin, there are some days for which there is no satellite
coverage of the basin. Additionally the footprint positions vary slightly from day to day.
This means that the relationship between the satellite footprint that covers a pixel and the
pixel snow properties is not constant since the distribution of pixels within the footprint
changes. The change in footprint location for a SNOTEL pixel (#4) over four consecutive
days is shown in Figure 4. This effect must be taken into account when attempting to relate
pixel values of snow properties with the brightness temperature measurements of the

satellite footprint and will be discussed further in a later section.

C. Ground truth measurements for algorithm validation

The SNOTEL measurement network records daily SWE values at selected points
throughout the mountains of the western United States. Six of these stations are located
within or very near the Upper Rio Grande basin for the year of study. Their names,
locations, and elevations are listed in Table 2 and their locations with respect to the basin

shown in Figure 3 (as indicated by an 'X"). The stations are all in the upper area of the



basin where the snow amounts are larger and measurements more important. For this
study, the SNOTEL values are taken as representing the SWE for the 1 km pixel within
which it lies. These measurements represent the ground truth to evaluate the performance

of and validate the algorithm.

4. Implementation of Methodology

The basic idea of combining snow hydrology information with passive microwave
remote sensing measurements through parameter estimation techniques was outlined in a
previous section. There are several ways of implementing the three major components of
this algorithm. Several different types of snow hydrology models and microwave radiative
transfer models are available. Additionally there are several possible approaches to the
parameter estimation procedure of error minimization. We have chosen the following ways

to implement the three components previously discussed.

A. Snow hydrology model

The snow model contains several components: accumulation, snow surface energy
balance, and internal snowpack physics. Snowmelt runoff is not currently considered
since we investigate only the accumulation portion of the snow season. The model
operates on a spatial grid of resolution approximately 1 km as determined by the DEM.
Hourly meteorological inputs are input to the snow hydrology model to drive the
accumulation and surface energy balance components. These inputs are adjusted for each
model pixel using an elevation relationship such as air temperature lapse rate,
dT, /dz = constant.

The variables describing the snowpack for use in the radiative transfer model are
snow depth d, snowpack temperature T, grain size (radius) g,, and fractional volume f,.
These four variables are referred to as the snowpack state variables S. Each pixel within
the spatially distributed snow hydrology model will have its own set S. The snow
hydrology model maintains two related snowpack state variables: snow density p, and
snow water equivalent W. These are related to the parameters in S by

p. =091, M

and



W=p,d, 2)

where 0.91 is the assumed density of ice (g-cm™) and W is in cm. These state variables
evolve over time as a function of the mass and energy balances as discussed below.
The model operates over a discrete time step At, during which the snowpack water

equivalent evolves according to

W(t+A)=W(t)+P-M-E, (3)

where P is snowfall, M is melt, and E is the loss due to sublimation, all in units of cm.

The accumulation component of the model, P, is based on point precipitation and
temperature records in the area, to determine the amount that falls and whether it falls as
rain or snow. The precipitation/elevation relationship is adjusted using the SNOTEL data
by adjusting the total volume of precipitation at the point. The total annual volume of
precipitation over the basin is adjusted using the streamflow measurements.

Following Marks (1988) we use a two-layer snowpack model, which consists of an
“active layer” from which melt is produced, and a secondary layer which contains the
remainder of the snow. The active layer is chosen to have a depth of 10 cm, thus capturing
most of the depth of solar radiation penetration (approximately 90 percent), while not
requiring an unduly large amount of heat to initiate melt conditions. The melt from the

active layer is

_2.-0.
M = T (4)

m

where L, = 79.7 cal-g" is the latent heat of melt (the amount of energy required to
transform ice to water), Q, is the net energy flux into the snowpack, and Q.. is the cold
content of the active layer, representing the amount of heat necessary to raise its
temperature to 0°C. If Q.. > Q,, then no melt occurs. Since the model only considers the
accumulation and ablation process, the meltwater is immediately removed from the
snowpack without any routing, and the possibility of the meltwater refreezing in the pack is
not considered.

The snowpack cold content is
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Qcc = _C:W:’ (5

where C, = 0.5 cal-g‘1 -deg'l is the snowpack specific heat. If the net energy into the
snowpack is great enough to raise the snowpack temperature to 0°C (Q, > Q..) then melt
will be produced according to (4). If no melt is produced, the updated snowpack
temperature is

On

5

T,(t+An) = +T,(1). (6)

The mass loss due to sublimation is calculated as
=% ™

where Q, is the latent heat transfer from the energy balance and L, = 677 cal-g" is the

latent heat of sublimation (the amount of energy required to transform ice to vapor).

The net energy flux at the surface, Q,, is given by
Q=0 +0+0,+0, (8)

where the fluxes Q,, @, 0,, Q. are respectively shortwave, longwave, sensible, and latent
heat. The ground-to-snowpack and the precipitation-to-snowpack heat transfers are small
relative to the other terms of (8) and are thus omitted.

The equations used to estimate the components of the snow surface energy balance
are based on the point model from Marks (1988). However, it has been generalized to a
spatial model incorporating the topography and forest cover characteristics of the basin.
This includes accounting for the topographical and vegetative effects on solar and longwave
radiation. More information on the computation of the different components in the surface
energy balance (Equation 8) is in Appendix A. SWE outputs are compared with the
SNOTEL stations to determine that they are reasonably close.

The snowpack physics algorithms, which describe the evolution of snowpack
properties such as snow grain size and density are taken from the SNTHERM model of
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Jordan (1991). The snow metamorphism is driven by the outputs from the energy and
mass balances previously discussed. The algorithms are simplified to operate for a one-
layer snowpack; there is no variability in the vertical direction.

The equation for the evolution of snow grain size is

82
s+ A1) =0.14—==—Ar+g (1), 9
gs(1+Ar) 22.() 8(1) )

where g, is an empirical constant with a value of 4.0x 10 8m? s,
There are two components in the snow compaction process: destructive

metamorphism and overburden. Destructive metamorphism is important initially when

3

snow density is less than 0.15 g-cm™. For dry snow, the empirical function used for

compaction is

1 oA

= =-2.778x10™ x ¢, x ¢, x exp[-0.04(273.15 - T)], (10)

m

where ¢, is | for dry snow (the case here) and

o =1 | if p; <0.15g-cm™,

c3 = exp[—46.(p, - 0.15)] if p,>0.15g-cm™.

After snow has undergone its initial settling stage, densification proceeds at a slower rate
determined mainly by compaction due to snow overburden pressure P, such that

1 dAz
Az ot

_ _%exp[~c5(zv3. 15— T)]exp(=c¢, -p,). | (11)
0

[+]

where 71q is a viscosity coefficient for snow and ¢, and ¢, are constants based on
observational evidence. The compaction rate is thus the combination of these two terms.
As the depth changes but the water equivalent does not (no melt), the density of the
snowpack will also change.

The final output of four snowpack parameters for the microwave scattering model
is: d snow depth, T, snowpack average temperature, g, snowpack average grain size, and



f, snowpack average fractional volume, Sz{d, T, g.‘,f_‘}. These four snowpack
parameters serve as the link between the microwave scattering model and the snow
hydrology model.

Figure 5 shows the comparison between the hydrology model output SWE and the
measured SWE for two SNOTEL stations: #2 which is a high elevation station and #4
which is a low elevation station. The model is able to reproduce the snowfall events, but is
usually not able to accurately reproduce the amounts. This is due to the simple scheme
used to determine snowfall amounts in a topographically complex area. This is where the
incorporation of information from passive microwave remote sensing measurements can
improve SWE estimates.

To demonstrate the evolution of these parameters in time, simulation outputs from
the hydrology model for all four snow parameters at station #2 (Figure 6a—d) and station #4
(Figure 7a-d) are shown. In both cases the depth increases whenever there is a snowfall
event, then decreases as the snow compacts. Snowpack temperature stays low until the
end of March, when it starts to increase as the melt season approaches. Grain radius and
fractional volume both follow nearly the same shape of curve. This is due to the averaging
of the snowpack properties to one layer. These values increase as the snowpack
metamorphoses, until a new snowfall event, which reduces the average snowpack value by

introducing fresh snow, which has smaller grain sizes and is less dense.

B. Snow-microwave radiative transfer

[n passive microwave remote sensing the microwave emission from the ground
surface is measured. This radiation is attenuated by the snowpack as a function of its
temperature, depth, density, and grain size, as well as liquid water. To avoid the
complications due to liquid water in the snowpack we use only nighttime measurements,
when the snowpack has re-frozen, and do not continue the snow simulation into the melt
season. From the snow hydrology model of the previous section, we have estimates of the
four snowpack parameters S at the pixel scale. The brightness temperatures at this | km
scale can be estimated using a microwave scattering model. Thus, from the model we have
T where 19 and 37

biyy ? T/’nv ' Th:m }’
represent the frequency in GHz and V and H the vertical and horizontal polarization.

bygy ?

the brightness temperature vector T, ={T

The model used to simulate the microwave interaction with the snowpack is the
dense medium radiative transfer (DMRT) model (Tsang 1987, 1992). Unlike the
traditional radiative transfer models, the DMRT takes into account the dependency of
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scattering upon relative particle positions. This is important in a dense medium such as
snow. The model incorporates a particle size distribution using a modified gamma
distribution. Thus a medium containing particles of different sizes, such as snow, can be
accounted for. The model accounts for scattering by particles as well as the interaction at
the snow/soil interface and the snow/air interface. The equations describing the model are
presented below. Additional details on the model and its implementation are in Tsang et al.
(1992).

We consider thermal emission from a layer of dielectric particles of permittivity &,
embedded in a background medium of permittivity € overlaying a homogeneous half-space
of dielectric medium of permittivity €, (see Figure 8). Note for the case of snow, the
background permittivity € is &, of free space and the particle permittivity €, will be that of
ice. The particle sizes obey a size distribution n(g) which is the number of particles per
unit volume with radii between g and g +dg. The medium is of uniform temperature 7.
Then the dense media radiative equation for passive remote sensing assumes the following

matrix form, for 08 < ;

- - 1
coseail(z,e)=—l<,1(z,9)+ x.(1-@)CT l]
z

+§ K(cb'[ggin 6'P(6,0°)-1(z,0")d6’ (12)
where ‘
_ 1(z,6)
1{z,0) = 13
(=:6) [uz.e)} | o

and [, [, are the vertical and horizontal specific intensities, respectively. Also in (12),
C=K,K" (/lzkz), K, is Boltzman's constant, A is the free space wavelength, K’ is the
real part of the effective wave number in region 1, k is the free space wave number, @ is
the albedo, and x, = 2Im(X) is the extinction rate of the specific intensity. In (12)

P(6,6)= (14)

Pu (9’ 9') Plz(ev 9’):|
P, (6.8°) pn{6,6")

where
p,,(8,8")=2sin’ Bsin’ 8’ + cos® Hcos” 6’ (15)
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p,(0,8")=cos’ 8 (16)
P (0,0")=cos’ 8’ (17)
pn(8,6°)=1. (18)

For 0< 0 < /2 , the boundary conditions for (12) at the air-snow interface, z =0, are

I,(z=0,7~8)=R(6)](z=0,6) (19)
and
1(z=0,m-6)=R,(0)],(z=0,8), (20)

and for the snow-ground interface, z = —d, they are
I(z=-d,0)= R, (0)],(z=~d,n-6)+(1- R (0))CT, (21)

and
I,(z=-d.0)=R, ()I,(z=~d.m~ 6)+(1- R, (6))CT,, (22)

where R, R,, R, and R, are reflectivities.

After (12) is solved subject to the boundary conditions of (19)—(22), the brightness
temperatures in the direction 8, where 6, =sin™' (K’sin 8/k) is related to 6 by Snell's

law, in region O for vertical and horizontal polarizations are given by

Tg,(60) |~ C|(1- Ry(6))14(c=0,6) )

rev(%)} 1{(1—&(9))lv(z=0,6)
The differences between the dense medium theory and the conventional radiative
transfer theory are the calculations of X, the extinction rate x,, and the albedo @ in terms
of the physical parameters of the medium, which are represented by &, and the size
distribution n(g). These parameters are determined by using approximations of the Dyson
and Bethe-Salpeter equations. The cross pair distribution functions of multiple particle

sizes are calculated through the Percus-Yevick approximation (Percus and Yevick, 1958;
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Baxter, 1970) that expresses the correlations of particle positions in terms of the size
distribution n(g).

Also it is necessary to consider the effects of surface roughness in the Fresnel
reflectivities, especially when the snowpack is thin. Following Wang et al. (1983) we use
two polarization mixing parameters, one for each interface. For the upper boundary, the
air-snow interface, z=0,

R(6)=[(1-Q)r,(6)+0r,(8)] (24)
and

R,(6)=[(1-Q)r,(6)+Qr,(6)], (25)

where Q is the mixing fraction between the two reflection polarizations for the snow-air
interface and r, and r, are the Fresnel reflectivities with effective propagation constant K

determined by

k?cos @ — K'(k? — K" sin’ 9)“'
rv(e) = 5 2 2.2 13 (26)
k*cosB + K'(k - K’"sin 9) l
and
’ (1Y _ 2 oin? %
. (6) = K’cos 8 (l\7 K ’ sTn’ G)J' 27
K'c059+(k' - K’ sin” 6) ‘
In the lower boundary, at the snow-ground interface, z = -d,
R, (0)=[(1-0,) (8)+ 0y, ()] (28)
and
R, (0)=[(1-0,)n, (8)+ 0y, ()], (29)

with
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b
&2k cosf- K’( &2 k2 - K sin? 9)
£ €
r, (6)=]= > y (30)
2/(02 cosf + K'[flku2 - K’*sin? 9]
80 EO
and
€ %
K’cos@ —(—lkoz ~ K’ sin’ 9]
£
r, (8)= - 7l 31)
K’cos@ +(§2—k02 - K’*sin’ 9]
E0

where &, is the free space wave number.
In this study we use a Rayleigh size distribution of snow particles (West et al.,

1993) represented by

) v
n(g) = s exp[— 2 j (32)

C16(g) ( 4(g)

where (g) is the mean radius and f is the fractional volume of all the particles. The

fractional volume and the mean radius are defined by

f=1, — ¢ nl8)ds (33)
_lo gnle)ds e
Jon(g)dg

The advantage of the Rayleigh size distribution is that there are only two parameters: f
fractional volume, and (g) mean grain size.

The medium input physical parameters of the dense medium radiative transfer
equations using the Rayleigh size distribution include the previous vector of four snowpack
parameters from the hydrology model S and a set of fixed parameters describing the

electromagnetic properties of the dense medium, F, necessary to implement the DMRT.
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This fixed set F consists of:

1) the complex permittivity of the particles: g,, =(3.2+i0.00025)¢, and

g,,, =(3.2+1i0.001)¢,, for 19 and 37 GHz respectively,

2) the permittivity of the ground surface, Eqs

3) the ground surface temperature T,

4) the two previously described polarization reflectivity mixing parameters, Q and
Q,, and

5) the maximum grain size in the grain size distribution of (32), Emax -

It is necessary to estimate some of the physical parameters of the scattering model,
such as the emissivity of the soil and its initial temperature. This is done by calibration,
using the microwave brightness temperature measurements for October, right before any
snow has fallen and is covering the ground. This provides a calibration for soil properties,
which affect the microwave brightness temperatures throughout the year, although much
less as the snow season progresses and the snowpack becomes deeper. This allows for the
estimation of €,, T,, and the roughness mixing parameters, Q and Q,.

Additionally, the determination of snow microwave properties through calibration is
necessary. The maximum and minimum limits need to be set for the snow particle size
distribution. The minimum value is based on the initial grain size used for fresh snow.
The maximum value evolves through time, just as the shape of the particle distribution
evolves through time. The hydrology model grain size (g) is taken as the distribution
mean. The upper limit must be periodically re-established since as the mean grain size from
the hydrology model evolves (Equation 9), the snow grain size distribution evolves with
the upper limit increasing as well. The need to update is based on visual inspection of the
snow grain size output from the model, see Figures 6¢ and 7c. The fixed parameter vector
Fis {&, &, T, Q. Oy 8rue .

From these parameters, the brightness temperatures of vertical and horizontal
polarization at specified frequencies and observation angles can be calculated from the
above equations. Using the snow parameter output, the brightness temperatures at 19 and
37 GHz for vertical and horizontal polarizations are obtained at the 1 km pixel scale. The
efficient, approximate representation of the snow microwave radiative transfer model is

described in Appendix B using a neural network representation.
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C. Remote sensing data that overlap a pixel

At the end of each day for which there is basin coverage from the sensor, the
DMRT is used to estimate the four microwave brightness temperatures from the four
snowpack parameters at pixel resolution (1 km). The pixel brightness temperatures are
then averaged to the footprint scale (25 km) for each measurement. The difference between
the pixel integrated brightness temperatures and SSM/I measured brightness temperatures is
distributed back to the pixels from which these adjusted | km brightness temperatures can
be used to obtain adjusted snowpack parameters.

The critical point in the previously described procedure is in going from the 1 km
scale to the 25 km scale and then back to the 1 km scale. The remote sensing
measurements cover approximately a 25 km area and thus represent a spatial average of
snow properties that may be quite heterogeneous. Depending on the location of the pixel
with respect to the center of the footprint, the pixel-to-footprint measurement relationship
can vary from day to day.

To examine the possible fluctuations in remote sensing measurements due to
footprint position, we compared SNOTEL sites with brightness temperatures assigned to a
pixel based on the degree of coverage. The was examined as well in Wilson et al. (1996).
Figure 9a shows the brightness temperatures for a coverage area with radius of 12.5 km,
the actual footprint size. Figure 9b shows the brightness temperatures using a coverage
radius of 4.0 km from the footprint center. As the pixel of interest becomes nearer to the
center of the footprint, it should be more closely related to the footprint measurement.
From the figures we see that the amount of fluctuation is reduced as the distance from pixel
to footprint center is reduced, showing more clearly the expected trend of decreasing
brightness temperatures with increasing snow depth. This method is employed in

determining what measurements to use in the updating procedure.

5. Results

The implementation shown in Figure | is now demonstrated. A comparison
between the two methods of determining SWE is made. The first method is the distributed
snow hydrology model run independently of the remote sensing information, relying only
on the topographic information and point meteorological measurements. The second

method is using the snow hydrology model, but replacing the parameter outputs with the
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updated set based on the remote sensing brightness temperatures. To determine how well
the combined model performs compared to using only the spatially distributed snow
hydrology model, we examine the results of the SWE curves from the two methods at two
SNOTEL sites (#2 and #4). The comparison is made for the snow season of 1992—1993.
The simulation starts on October 1, 1992, which is the first day of the hydrologic water
year. The SNOTEL measurements are taken as the ground-truth for each site, representing
the | km pixel within which it lies.

The snow hydrology model is run first, independently of any remote sensing
information, solely on the point meteorological forcings. Then the simulation is started
with the remote sensing updating scheme. We start the updating when the SWE is greater
than 5 cm so that the scattering of the microwave emission by the snow is significant. An
update is made every five days. Linear interpolation is used between the brightness
temperature observations that are used based on the previously discussed coverage
criterion. In the time interval between updates, the two methods will follow each other
since the SWE curves are dependent only on the precipitation estimates during the
accumulation period. The methods will diverge only at the updating steps.

The first station examined is station #4. It is a lower elevation station at 2860 m
with smaller amounts of snow and maximum SWE of 15 cm. Its snow accumulation
season begins later in the season than much of the basin. The results of the comparison are
shown in Figure 10. We also include in the figure the measured SNOTEL SWE. One of
the brightness temperature measurements, 37H, is included for reference. However, we
have used all four brightness temperature measurements for the inversion of the snow
parameters. Table 2 show the values for the fixed parameter vector F for this station.

Since significant snow accumulation does not develop at this station until late
December, the updating with remote sensing measurements is not started until December
28. Improvement is obtained from using the updating procedure. Not every point is closer
to the SNOTEL measurements than that obtained by the snow hydrology model alone, but
more often it is closer. The updating is able to help compensate for poor snowfall estimates
in the snow hydrology model, such as Day 110. The resuits in the figure indicate that the
hydrology model with remote sensing updating is generally closer to the SNOTEL ground
truth.

Another test simulation is done for a high elevation station, #2, at 3420 m with
larger amounts of snow and a SWE maximum of 40 cm. Note that a change in elevation of

500 m between stations 2 and 4 gives a corresponding change in SWE of over 100%,



highlighting the spatial variability of SWE in this region. The comparison results are
shown in Figure [1. Again an improvement is obtained from using the updating scheme.
The results in the figure indicate that the hydrology model with remote sensing updating is
generally closer to the SNOTEL ground truth.

Between Day 70 and 75 a drastic drop is observed in measured brightness
temperature. This is most probably due to the development of large grain sizes from a
small melt event; the SNOTEL measurement drops temporarily during this time. This is
one instance where it is important to recalibrate the DMRT, changing the upper grain size
limit in the distribution. In general, every 15 days (after 3 updating events) the upper limit
of the grain size g, is recalibrated. Table 2 also shows values of the fixed parameter
vector F for this site. The main difference is in the evolution of the grain size as evidenced
by the differences in upper limit to the grain size distribution. The incorporation of the
upper limit in the grain size distribution as a parameter in the neural network to avoid this

recalibration is under research.

6. Conclusions

A method to combine passive microwave remote sensing measurements within a
spatially distributed snow hydrology model to estimate the time evolution and spatial
distribution of snow parameters has been presented. The method combines the information
contained within the satellite microwave measurements with that obtained from the spatially
distributed snow hydrology model. A spatially distributed snow hydrology model that
uses spatial topographic inputs and point meteorological measurements to force the energy
balance is combined with the SNTHERM model to obtain the four snowpack parameters
for passive microwave remote sensing: snowpack density, depth, temperature, and grain
size at a | km scale. The brightness temperatures for these | km snow parameters are
estimated using the dense medium radiative transfer model. These are compared with the
25 km resolution satellite measurements and the differences distributed back to the | km
scale brightness temperatures. The adjusted snowpack parameters are determined by
inverting the DMRT.

The approach has enabled us to handle the two difficulties previously discussed:
differences in spatial scale between the spatially distributed snow hydrology model (1 km)

and remote sensing measurements (25 km), and the non-uniqueness of the inversion of the



remote sensing measurements. By implementing the | km resolution hydrology model we
are able to relate the 1 km to the 25 km resolution SSM/I measurements with the DMRT
and some estimation techniques. Inversion of the adjusted pixel brightness temperatures
provides the adjusted snow parameters at the | km scale to update the snow hydrology state
variables. Analysis of the satellite footprints is undertaken to determine effective pixel
SWE relationships with degree of footprint coverage to that pixel.

The approach is demonstrated for two SNOTEL sites, making a comparison
between the case with only the snow hydrology model and the case that includes remote
sensing updating. In each case there was overall improvement in the ability of the model to
reproduce the SNOTEL SWE measurements when the remote sensing measurements were
included.

This methodology shows promising results in improving snow water equivalent
amounts from snow hydrology models. This method can be easily extended to all pixels
within the basin to map snow properties such as SWE. Additional remotely sensed types
of information such as snow covered area can be incorporated within this framework.
Bayesian updating techniques, which can provide better estimation are currently under

investigation (Davis et al., 1995).

Appendix A
In this appendix the equations used to estimate the different components of the
snow surface energy fluxes (Equation 8) are presented. These are for shortwave and

longwave radiation, and latent and sensible heat.

A.l Shortwave radiation

Three components are considered in the calculation of shortwave radiation: direct,
D, diffuse, I, and sky reflected, R. Reflected radiation from neighboring slopes is
neglected; an assumption that is justified for forested catchments, but would need to be

retained in high alpine environments. The total shortwave radiation into the snowpack is

Qs=1+D+R , (A1)



Direct radiation is that part of the solar beam that is not depleted due to scattering or
absorption. Diffuse radiation is the fraction of the beam that is scattered in the forward
direction. The sky reflected component is radiation reflected from the surface to the sky
and then back to the surface again. This can be a significant component of total downward
solar radiation over snow-covered surfaces where the albedo is high and there is low cloud
cover. Presuming that measurements of /, D, and R are not available, which is normally
the case, the direct and diffuse terms can be estimated using the clear sky equations of
Munro and Young (1982) with the cloud effect estimated based on Davies et al. (1975) and
Davies and Idso (1979). The direct component of solar radiation received at a snow

covered pixel is
1=10H(1—as)[l//03 l//r.\"_(l_ Ww)]WdastWCFs (A.2)

where /, is the direct solar radiation redching the top of the earth's atmosphere, H is a
topographic parameter accounting for pixel slope, aspect, and shading, «;, is the snow
albedo, W is the transmissivity function for ozone absorption, Rayleigh scattering, water
vapor absorption, aerosol absorption and scattering, and clouds (for subscripts O3, rs, w,
da, ds, and C), and F; is an interception factor for forest cover.

The diffuse radiation component is estimated assuming that the fraction of Rayleigh
scattering in the forward direction is one half, and that the fraction of Mie scattering in the

forward direction is 0.85 (Robinson, 1970). The diffuse radiation into the snowpack is
D =1,(1- a, {[ o, (1= vr)/2]+ [Woy (1= wie) - (1= )]

Waa(l— Wy )0-85 WV (A3)

where V is the pixel view factor, which represents the fraction of the pixel open to the sky

hemisphere.

The reflected radiation is an infinite sum of reflected radiation between sky and
atmosphere. However, it is only of significance in this study when there is cloud cover

and only one return is considered. This is estimated as

R=(I+D)o,(1-a;)aV*F (A.4)
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A.2 Longwave radiation

The longwave radiation term consists of four components: emissions from the
atmosphere, clouds, forest, and snow surface. As with the shortwave component, the
effect of the surface radiation from neighboring pixels is neglected, which is an appropriate
assumption in the presence of forest cover. Longwave radiation is partitioned between
forest-snow exchange and atmosphere-snow exchange. The longwave radiation balance at
the surface is

QL =(Qra + O )V, (1= F)+ Q1 F -0y (A.S)
where F is the fractional forest cover. The atmospheric component is
O, = €,0T," (A.62)

the cloud component (Kimball et al., 1982) is

O = 2 T3 f3€,, 07ci4 (A.6b)

i=l
the forest component is

Qi =¢€s0T" (A.6¢)

and the surface component is
Qs =¢&0T* (A.6d)

where € is emissivity, o is the Stefan-Boltzmann constant, T is temperature, and Tz and
fg are the transmissivity and fraction of radiation in the 8-14 pm band, the region where
the atmosphere is opaque in the infrared. The subscripts a, ¢;, f, and s represent air, cloud

at level i, forest, and snow, respectively.
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A.3 Heat transfer

A bulk aerodynamic formulation (Sellers, 1965; Deardorff, 1968) is used for

sensible heat:
Oy = panCHuaFu(Ta -7 )Sf (A7)

and for latent heat:

_0.622p,L,
P

a

o CwigF,(e, - e,)sf ‘ (A.8)

where Cy and Cy, are the bulk transfer coefficients for heat and water, which depend on
wind reference height, u, is the near-surface wind speed (e.g., at elevation 10 m above the
surface), P, is the atmospheric pressure, F, is an adjustment factor for the forest effect on

windspeed, e is the vapor pressure, c, is the specific heat, L, is the latent heat of

P
sublimation, p, is the air density, and S is a stability adjustment.

Appendix B

As seen in Section 4B, the mathematical description of the DMRT involves integro-
differential equations that must be solved numerically and an inverse relationship that is
difficult to estimate. There are several methods available to determine the inverse. We
have chosen to use a neural network representation of the DMRT to solve the inverse
problem. The input-output pairs of the DMRT are used to train the neural network . Once
the neural network is trained, the brightness temperatures can be computed readily from the
input parameters S. This has been used for the DMRT in Tsang et al. (1992) and Davis et
al. (1993). We use a multilayer perceptron (MLP) which is a feedforward neural network
having one or more layers of hidden neurons between the input and output layers. They
have a simple layer structure, where successive layers of neurons are fully interconnected,
with the connecting weights controlling the strength of the connections. Based on the
snowpack parameters S as the inputs and brightness temperatures T, as the outputs, the
MLP has four separate input and output nodes. We used one hidden layer with five nodes.
The MLP is a representation of the function ¢ where T, = ¢(S,F) as shown in Figure 12.
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An MLP is a function determined by its architecture and its connection weight
values. The input vector passes directly to the first layer of connection weights. The input
u;({+1) to each neuron in the next layer is the sum of all of its incoming connection
weights multiplied by their connecting input neural activation value a; (1). The trainable
offset value associated with the neuron is added to the sum, and the result is fed into the

nonlinear function of the neuron, which is usually the sigmoid function (Lippmann, 1987),
)
flu)=(1+e*)". (B.1)

The training phase of the MLP uses the backpropagation (BP) learning rule, an
iterative gradient descent algorithm designed to minimize the mean squared error between
the desired targets and the actual output vectors. The weights are updated until a minimum
error criterion is reached between the target values T, and the predicted outputs from the
MLP.

To provide a training set for the neural network, the DMRT is run for many
combinations of the four snowpack parameters, discretizing the space appropriately. The
neural network is trained on this model output set until the overall improvement at each new
iteration becomes small.

This provides the forward model which outputs the | km pixel brightness
temperatures, given the snow hydrology parameters. The adjusted brightness
temperatures, based on the simulated and measured values are used as inputs to the inverted
neural network, which then gives adjusted snowpack parameters for each 1 km pixel. The
snow hydrology model then continues onward with these updated parameters, being
updated for each day in which there are SSM/I observations available. A least mean square
error scheme is used to update the snow parameters for each pixel using the neural network
inversion of the DMRT. The snow hydrology model then continues forward with the
updated parameters until the next SSM/I observation. This is the forward iterative

inversion neural network technique discussed in Davis et al. (1993).
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Table 1. Data inputs used and from where they were obtained.

Data Type Agency
a) Hydrology model inputs
Digital Elevation Model file U. S. Geological Survey

Land Use and Land Cover files U. S. Geological Survey

Hourly point meteorological National Weather Service
measurements :

Daily precipitation totals National Weather Service
Basin streamflow measurements U. S. Geological Survey

b) Satellite remote sensing measurements

SSM/I microwave brightness Marshall Space Flight
temperatures Center, NASA

¢) Ground truth measurements for algorithm validation

SNOTEL SWE measurements Natural Resources
: Conservation Service

Address

Sioux Falls, SD
Sioux Falls, SD
Asheville, NC

Asheville, NC
Sioux Falls, SD

Huntsville, AL

Portland, OR
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Table 2. Name, location, and elevation of the SNOTEL stations-available for the year of
study that are in or near the basin (see Figure 2).

Number Name Latitude Longitude Elevation
(Deg-Min) (Deg-Min) (m)
| Beartown 37-43 107-30 3530
2 Middle Creek 37-37 107-02 3420
3 Slumgullion - 37-59 107-12 3470
4 Upper Rio Grande 37-43 107-15 _ 2860
5 Upper San Juan 37-29 106-50 3080
6 Wolf Creek Summit 3729 106-48 3345

~ Table 3. The values used for the fixed parameter vector F in the DMRT for SNOTEL
station #2 and for station #4.

Number £, T, 0 Q, g, (cm)
2 0.0375
(3.0+i0.1)g, 270. 0.40 0.25 0.0450
0.0600
4 0.0350
(3.0+i0.1)¢, 270. 0.40 0.30 0.0425

0.0500
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Figure | Flow chart outlining the steps in the combination of the snow hydrology model

and remote sensing information to estimate snowpack parameters. Letters refer to

paragraphs in the text.
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Figure 2 Location of the upper Rio Grande river basin near Del Norte, CO within the
region. The left border is the boundary between Utah and Colorado, and the lower border

the boundary between New Mexico and Colorado.
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Figure 3 Elevation image of the Upper Rio Grande river basin near Del Norte, CO. The
image resolution is 1 km based on the DEM. The location of the SNOTEL measurement
stations are also included (see Table 1).
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Day 091 Day 092

Day 093 Day 094

Figure 4 Sensor footprint coverage of a SNOTEL site for four consecutive days. The day-
to-day variation in the coverage position of the footprint for the SNOTEL pixel is shown.
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Figure 9a The 37 V brightness temperature plotted as a function of SNOTEL SWE for
station #4 using a coverage radius of 12.5 km. This includes all brightness temperature
measurements whose footprint covers the SNOTEL pixel.
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temperature and SWE is much clearer.
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Figure 11 Comparison of the SWE simulations at SNOTEL station #2 for the hydrology
model without updating and the hydrology model with updating. Four brightness
temperature channels are used in the multi-parametric inversion. The 37 H brightness
temperature measurements are shown for reference.
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Figure 12 The structure of the multilayer perceptron neural network used to represent the
dense medium radiative transfer model (DMRT). We use four input nodes, four output
nodes, representing the input and output vectors S and T, and one hidden layer with five
nodes.



